

Designed for trace-level oxygen analysis, the HALO OK offers:

- Industry-leading parts-per-trillion detection capability
- Unprecedented speed of response
- Wide dynamic range
- Absolute measurement (freedom from need for calibration gases)
- Low maintenance and cost of ownership
- Compact, portable package, ideal for both fixed and mobile cart installation
- Direct measurement in many matrices

Leading Choice for Ultra-high Purity Gas Users

Detect gas quality upsets before they damage your process. Using Tiger Optics' HALO OK oxygen analyzer, you can verify oxygen impurity levels with part-per-trillion accuracy, drift-free stability and instantaneous response. You'll find our system exceptionally easy and fast to install, and effortless to maintain, with built-in zero verification. Its robust design—free of moving parts—results in an analyzer that has a high Mean Time Between Failure (MTBF) rate and a very low Cost of Ownership (CoO).

With its patented catalytic conversion technique, utilizing a minute amount of hydrogen to cleanly and safely convert oxygen to moisture, the OK offers a fully laser-based solution for Continuous Quality Control of your process. Based on powerful Cavity Ring-down Spectroscopy, the HALO OK aligns with the SEMI F-112 standard for moisture dry-down characterization of gas systems. Pair the HALO OK with our HALO KA or HALO KA Max for ppt-level moisture measurement and enjoy the many advantages of profit-boosting CRDS technology for both critical contaminants.

HALO OK

Trace-Level Oxygen Analyzer

Performance	
Operating range	See table on next page
Detection limit (LDL, 3σ/24h)	See table on next page
Precision (1 _o , greater of)	± 0.75% or 1/3 of LDL
Accuracy (greater of)	± 4% or LDL
Speed of response	< 3 minutes to 95%
Environmental conditions	10°C to 40°C
	30% to 80% RH (non-condensing)
Storage temperature	-10°C to 50°C

Gas Handling System and Conditions		
Wetted materials	316L stainless steel	
	10 Ra surface finish	
Leak tested to	1 x 10 ⁻⁹ mbar l / sec	
Gas connections	1/4" male VCR	
Sample inlet pressure	10 – 125 psig (1.7 – 9.6 bara)	
Sample flow rate	0.5 to 1.8 slpm (gas dependent)	
Sample gases	Most inert matrices	
Gas temperature	Up to 60°C	
H ₂ supply requirements*	~15 sccm, 20 – 125 psig	

Dimensions	H x W x D [in (mm)]
Standard sensor	8.73 x 19.0 x 23.6 (222 x 483 x 599)
Weight	
Standard sensor	45 lbs (20.4 kg)

Electrical and Interfaces	
Platform	Max series analyzer
Alarm indicators	2 user programmable
	1 system fault
	Form C relays
Power requirements	100 – 240 VAC, 50/60 Hz
Power consumption	450 Watts max.
Signal output	Isolated 4-20 mA
User interfaces	5.7" LCD touchscreen
	10/100 Base-T Ethernet
	USB, RS-232, RS-485
	Modbus TCP (optional)
Data storage	Internal or external flash drive
Certification	CE Mark

^{*} H_2 supply (maximum 10 ppm H_2 O and O_2 impurity) is required for sample conditioning via catalytic conversion. For enhanced safety, a special model is available which uses a mixture of 3% $H_2/97\%$ N_2 as an alternative to pure H_2 . See next page for detection performance specifications.

HALO OK

Trace-Level Oxygen Analyzer

Standard Model (using pure H₂ utility gas)

Performance, O ₂ :	Range	LDL [†] (3σ)	Precision (1σ) @ zero
In Helium	0 – 0.5 ppm	50 ppt	17 ppt
In Argon	0 – 1 ppm	90 ppt	30 ppt
In Hydrogen	0 – 2 ppm	150 ppt	50 ppt
In Nitrogen	0 – 2.5 ppm	200 ppt	70 ppt

CO₂ Model (using pure H₂ utility gas)

Performance, O ₂ :	Range	LDL [†] (3σ)	Precision (10) @ zero
In Helium	0 – 0.5 ppm	50 ppt	17 ppt
In Argon	0 – 1 ppm	90 ppt	30 ppt
In Hydrogen	0 – 2 ppm	150 ppt	50 ppt
In Nitrogen	0 – 2.5 ppm	200 ppt	70 ppt
In Carbon Dioxide	0 – 5 ppm	5000 ppt	300 ppt

Enhanced Safety Model (using 3% H₂/97% N₂ mixture utility gas)

Performance, O ₂ :	Range	LDL ^{†,‡}	Precision (1σ) @ zero
In Helium	0 – 0.5 ppm	400 ppt	17 ppt
In Argon	0 – 1 ppm	400 ppt	30 ppt
In Hydrogen	0 – 2 ppm	400 ppt	50 ppt
In Nitrogen	0 – 2.5 ppm	400 ppt	70 ppt

Contact us for additional analytes and matrices or information about our optional purged enclosure.

[†]LDL is dependent upon the quality of the sample gas and the integrity of the sampling system.

*LDL is limited by minimum achievable O₂ concentration, not by 3σ baseline noise.

U.S. Patent # 7,277,177 · U.S. Patent # 7,255,836

